Die Nullstellen von quadratischen Funktionen in Normalform werden mit der pq Formel berechnet. In diesem Beitrag wird an drei Aufgaben mit Lösungen gezeigt, wie’s funktioniert.
Aufgabe 1
Berechne die Nullstellen der Funktion f(x) = x2 – 8x + 15.
Lösung 1
p = -8, q = 15
x1 = 4 + 1 = 5
x2 = 4 – 1 = 3
Aufgabe 2
Berechne die Nullstellen der Funktion f(x) = x2 – 9x + 14.
Lösung 2
p = -9, q = 14
x1 = 4,5 + 2,5 = 7
x2 = 4,5 – 2,5 = 2
Aufgabe 3
Berechne die Nullstellen der Funktion f(x) = x2 – 11x – 12.
Lösung 3
p = -11, q = -12
x1 = 5,5 + 6,5 = 12
x2 = 5,5 – 6,5 = -1